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A perturbation theory of heteronuclear diatomic molecules based on the isoelectronic
homonuclear molecules is developed for calculating the molecular energy, equilibrium inter-
nuclear distance, dissociation energy, and electric dipole moment.

The theory is applied to the isoelectronic molecules CO and N,. The uncoupled Hartree-
Fock approximation to the first-order perturbed wavefunction is determined by the varia-
tional method. The calculated molecular energy of CO is too low and the dipole moment is too
large in magnitude. However, the calculated polarity is in agreement with the results of
recent Hartree-Fock calculations at the equilibrium distance.

Molekiile aus zwei verschiedenen Atomen werden als gestorte gleichkernige, isoelektroni-
sche Molekiile behandelt, um Energie, Gleichgewichtskernabstand, Dissoziationsenergie und
Dipolmoment zu berechnen.

Dag Verfahren wird auf das Paar CO, N, angewandt. Die ungekoppelte Hartree-Fock-
Naherung fir die gestérte Funktion erster Ordnung wird durch Variation bestimmt. Fir CO
errechnen sich eine zu niedrige Energie und ein zu grofies Dipolmoment, dessen Richtung mit
der aus neueren Hartree-Fock-Rechnungen fiir den Gleichgewichtsabstand erhaltenen iiber-
einstimmt.

On développe un procédé ou les molécules diatomiques hétéronucléaires sont traitées
comme molécules homonucléaires isoélectroniques perturbées, et on calcule ’énergie molé-
culaire, la distance d’équilibre des noyaux, 1’énergie de dissociation et le moment dipolaire.

Ce procédé est appliqué & CO et N,. L’approximation Hartree-Fock non-couplée pour la
fonction d’onde perturbée de premier ordre, est déterminée par variation. L’énergie calculée
pour CO est trop basse, le moment dipolaire étant trop haut. Cependant, sa direction s’accorde
aux résultats de calculs Hartree-Fock récents pour la distance d’équilibre.

I. Introduction

The motivation for this investigation is the desire to compare the molecules
CO and N,, to understand their differences, and in particular the electric dipole
moment of CO and its sign. The striking similarity of the two molecules can be
seen from Tab. 1: the bond distances differ by only 3 per cent, and although the
dissociation energies differ by about 13 per cent, the total molecular energies are
within 3.5 per cent of each other. The polarity of the dipole moment of CO is very
difficult to determine, but was deduced indirectly to be C~ Ot from microwave
measurements of rotational magnetic moments and J = 1 « 0 rotational frequen-
cies for various isotopic species of CO [18]. However, despite the initial support of
this result by Raxsit’s Hartree-Fock calculation [16] using a minimum basis set,
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Table 1. Experimental properties of nitrogen and carbon monozide

R. (A) E. (H) De (eV) k. (108 dyne o) . (D)
N, 1.094= —109.5860 9.902¢ 2.296 0.
CO  1.1281= —113.377v 11.242¢ 1.9063 0.118 (C—0O+)a

& See reference [7].

b See reference [16].

¢ A. G. Gaypov, Dissociation Energies, revised edition (1953): D, is corrected for zero-
point energy.

4 See references [1, 18].

the recent Hartree-Fock calculations with enlarged basis sets [15, 9] appear to be
converging to a computed value of the dipole moment of CO equal in magnitude,
but opposite in sign, to the accepted experimental value [I8, I]. NEsBET [I5]
pointed out, in a critical discussion of the experimental determination [18] of the
polarity of the CO dipole moment, that the sign of the polarity has not in fact
been established definitely by experiment.

In this paper, a perturbation theory of heteronuclear diatomic molecules based
on the isoelectronic homonuclear molecules is developed. The heteronuclear mole-
cule is regarded as the isoelectronic homonuclear molecule perturbed by a transfer
of charge from one nucleus to the other. The situation is favorable for such an
approach since the perturbation operator is simply a sum of one-electron terms.
The molecular energy, equilibrium internuclear distance, dissociation energy, and
electric dipole moment are considered in Section IT. In Section IIT the Hartree-
Fock approximations for calculating the effect of one-electron perturbations are
briefly discussed. In Section IV the applicability of the perturbation theory is
carefully considered and the theory is applied to the molecule CO based on N,.

II. General Theory for Diatomic Molecules
1. Molecular energy
Let the heteronuclear molecule 4 B of interest have nuclear charges
Za=Z,(1+1), (2.1)
Zp= Zo (1 - }.) s
and be taken to be the Z-perturbed condition of the iscelectronic homonuclear

molecule CC with nuclear charges Z, = (Z4 + Zg)/2. The electronic Hamiltonian
of the Z-perturbed heteromolecule can be written

H=Hy+ AV (2.2)
where £, is the unperturbed electronic Hamiltonian and A is the parameter
A= (Z4—Zp)(Z4 -+ Zp) . (2.3)
The perturbation V is a sum of one-electron operators
N
V= 32,5 - ) @4

where 74; and rp; are the distances to the electron ¢ from the nuclei 4 and B
respectively. An important property of V is that it is antisymmetric with respect
to inversion or interchange of nuclei 4 and B (u-symmetry).
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The wavefunction ¥ for a particular nondegenerate electronic state and inter-
nuclear distance R of AB can be expanded in the familiar Rayleigh-Schrodinger
power series in A

V=90 + 04+ 0. (2.5)
Karo [111 has proved that the series converges for a perturbation such as Eq. (2.4),
at least for small enough 1. ¥W© is the wavefunction of the homonuclear molecule
for the same electronic state (i.e., that which is adiabatically correlated by chang-
ing 1) and internuclear distance R. We shall take ¥ and ¥® to be normalized so
that Re (¥®, WO = 0. The electronic energy expansion is

W=WO 22 W3 4 0 (24 (2.6)
where the terms in odd powers of 4 vanish by symmetry*. W is the electronic
energy of the unperturbed homonuclear molecule, and the second-order energy
coefficient W® is given by

We = (PO, TPwy ., (2.7)
The molecular energy £ of a diatomic molecule is the sum of the electronic energy
W and the nuclear repulsion energy;

E(R)y=W(R)+ Z,Zg|R . (2.8)
Hence by using Egs. (2.1) and (2.8), we obtain
E - EO =72(W® —ZYR) + 0 (2%) . (2.9)

Since W@ must be negative for a ground state, it follows that the molecular energy
E of the heteronuclear molecule must be lower than that of the homonuclear mole-
cule O at least for small A.

2. Equilibrium internuclear distance
Let R, be the equilibrium internuclear distance for the homonuclear molecule

C0; that is
dE® dE®
(TR’)O = (Ti__RT)R=R0 - 0 . (210)

Similarly let R, be the equilibrium internuclear distance for the heteronuclear
molecule AB; that is

ar dB
<E_§>e = (ER‘) RzRe - 0 - (2.11)
Differentiating Eq. (2.9) with respect to R we have
dE  dE® awe 72
- = Q2 = 0 4
7F T A (dR +R2>+(9(}{). (2.12)
If we put R = R, and expand dE©®/dR about R, we obtain
d2 E® AW 72
. _ Pl P 11 | A —-0 ce
(R — R,) ( 5 >0+ s [( = >6+R3}+ . (2.13a)
or
o p[jawey |z .
Ro— Ry — —k—oKd—R)e—i‘Ef}—l_ 0 (1) (2.13b)

* This can be seen by observing that the energy must be invariant to an interchange of
nuclei 4 and B, i.e., 1 —— A

28%
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where &y = (d? E©®/d R?), is the force-constant of the homonuclear molecule. Thus
R, — R, is of order 2%, and the sign depends on the relative magnitude of the two
terms in the square brackets; dW®/dR will be negative in general because W® is
negative at B = oo and becomes zero at B = 0.

3. Dissociation energy

The dissociation energy of the heteronuclear molecule A B, D,, and that of the
homonuclear molecule, D,, are given by

Dy = B (c0) — B (R) (2.14)
Dy = EO® (00) — BO (R,) .

Expanding £ (R,) about Ey, we have

dE
B(R) = B(R) + (B~ ) (g ) + - (2.15)
Using Egs. (2.12) and (2.13), we get
B (R) =B (B + 0 (). (2.16)
Hence making use of Eqgs. (2.9) and (2.16), we obtain
D, — Dy = 22 [AW® (Ry) — Z3| Ryl + O (A%) (2.17)
where
AW® (Ry) = WA (R)) — W (o0} . (2.18)

Since AW® (R;) > 0 in general, the sign of D, — D, depends on the relative
magnitude of the two terms in Eq. (2.17).

4. Electric dipole moment
The dipole moment of the heteronuclear molecule 4B is
iy = T, gy = (PO, POy + 21 (PO, POy 1 0 (38 (219)

where A is taken to be on the z-axis at R/2 and B to be at — /2, ¥ is assumed to
be real for simplicity and

N
p=— gl zi+AZy R. (2.20)

The dipole moment expression can only contain odd powers of A since it changes
sign if A changes sign. Hence, using Eq. (2.20), we get
> = 4 2y B+ 2 PO, fPOY) + 0 (39) 5 (2.21)
the dipole moment has been defined to be negative for 4- B+.
The terms in Eq. (2.21) tend to cancel since (M, y¥®3 is almost certainly

negative. To see this consider the spectral expansion in terms of the unperturbed
eigenfunctions ¥ :

Vor Hn0
) POy = . 2.22
FOp PO = 2 5T, (2.22)
The important point to notice is that both ¥ and u’ (= — > #;) have u-symmetry,

and that Vu' > 0 everywhere. This means that Vog piz0 = 0 for the lower excited
states, and could only be negative if the transition density oy, has different signs
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where V is the largest and where p is the largest. This is only likely to occur for
highly excited states, if at all. Since B, — B, < 0, we conclude that (¥®, yPO3,
the dipole due to the electronic charge shift caused by the Z-perturbation, is
negative. This conclusion is supported by the Unsold approximation for the sum
in Eq. (2.22), which replaces the increasing denominators #, — £, by that of the
smallest non-vanishing term, say E; — Ey;

PO, Vi P

o
FO,yFO) = = (2.23)

This approximate expression is necessarily negative.

To decide the sign of {u) it is therefore necessary to perform an accurate
calculation of the electronic term. It is interesting to note that by DaLcarwo’s
interchange theorem [4, 8] this can be written in the alternative form

PO, g Oy = (W, VPO (2.24)
where ¥ is the solution of the equation
(Hy— EO@y 4O+ (n — AZy RY VO =0, (2.25)

Since both V and p are one-electron operators the interchanged form does not
possess any obvious advantage.

5. Schwartz discriminant

A simple check on the validity of merely taking the leading terms in the power
series for W — W® in Eq. (2.6) and for {u)> in Eq. (2.21) is provided by the
Schwartz-like inequality

Vio ‘u’fzt() V‘Jn Uno 2 .
n;OEO_En n#oEg"’En Z(nzoEo—“En) ’ (226)
Using Eqgs. (2.6), (2.21) and (2.22), we obtain
W(o)‘I/V AZ R—<,u>2
<“‘ﬁf—_>(%>2<‘4%gr-‘> (2.27a)
or
/. — 2
W“‘”Vzgééiﬂﬁ (2.27h)

where « is the polarizability of the homonuclear molecule parallel to the axis,
given by

Mo
X = —2 } 2.28
nzOEowE" ( )

This inequality is checked below for the case of CO and N,.

HI. The Hartree-Foek Approximation

In this section the calculation of the effect of a one-electron perturbation on an
atomic or a molecular system is discussed. It has already been pointed out that the
perturbation ¥V [Eq. (2.4)] is a sum of one-electron terms. Since a comprehensive
review paper on the calculation of the effect of one-electron perturbations on atoms
has recently appeared [3] the uncoupled Hartree-Fock approximation [2, 10] alone
will be briefly discussed.
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The uncoupled Hartree-Fock approximation

The difficulty in solving the equations for the first-order wavefunctions in the
coupled Hartree-Fock approximation [3] is due to the coupling terms which arise
from the demand for self-consistency in the presence of the perturbation V. A
simpler set of equations for the first-order wavefunction can be obtained by
neglecting the effect of the perturbation on the Hartree-Fock potential. The
perturbed equation for this so-called uncoupled Hartree-Fock approximation is
then

(Hy+AV-—WY¥=0 (3.1)

where H, is the Hartree-Fock Hamiltonian for the unperturbed system. By expand-
ing Eq. (3.1) in powers of 1, we obtain the set

(Hy— W) YO =0 (3.2)
(Hy— WOYWPD 4 (V- WD) PO = (. (3.3)
Because of its one-electron character, V can be written in the form,
V=>uv({) (3.4)
and the first-order wavefunction ¥ can be written as
Yo = }: x4 H‘Pw) ¢ () (3.5)
i=1

where & is the antisymmetrizing operator and @ (4) is the first-order perturba-
tion correction to ¢® (i). Eq. (3.3) then separates into a set of uncoupled one-
electron equations

(F (8) — i) @ + (v (§) — w®) ¢

= 3 P ) 0, 8+ o, 0 A} P 6)

where F (1) is the unperturbed one-electron Hartree-Fock operator for electron 4,
wi® is the unperturbed Hartree-Fock orbital energy and w{’ is the first-order
orbltal energy.
A variational approximation to the solution of Eq. (3.6) can be obtained by
minimizing the functional

@ = G (F — o) G + s (0 — ) % +
A 0= u®) O = 3 () — )| G P 3

+ (o, > <<P§°) v <P§°)> + P2, v ™ (g, P}
If we substitute

P =i (38)

into Eq. (3.7) and neglect the eontrlbutlon from the nonlocal potential of F (3) in
the first term in Eq. (3.7) [10] we obtain

TP =4 @0 |V i 29+ <@l (0 — o) -+ 1) ¢ —
_ z { O __ (0)) | <‘P(0) T j0)> l2+ (3.9)

+ <<P‘°’ (FF + 1) ™ <o v g} -

This equation only involves one-electron integrals and will be used in the following
section.
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1V. Treatment of CO Based on N,
1. Electronic potential energy curves
Let P and W be the wave function and the electronic energy for the lowest
13" state of N, which dissocjates to N atoms in ground 48 states, and ¥§” and W§”
be those for the 1 3" state of N, which dissociates to the ions, N* and N-, in ground
3P states. Then using the ionization potential [14] and electron affinity [5] of the
N atom, we obtain
WO (00) — W (c0) = (LP. of N) — (E. A. of N)
= (14.54 — 0.05) eV 4.1)
=14.49eV
= 0.5325 1 .
Similarly let ¥; and W, be the wave function and the electronic energy of the
lowest 1 >+ state of CO which dissociates to atoms C and O in 3P states, and ¥,
and W, be those for the * >+ state which dissociates to ions C~ and O+ in 4S states.
Then using the ionization potential [14] of the O atom, and the electron affinity
[8] of the C atom we obtain
Wy (c0) — Wy (00) = (I. P. of O) — (E. A. of C)
= (13.61 — 1.12) eV (4.2)
=12.49eV
=0.4590H .
From the electronic energies of N, C~ and O+ which are computed from ionization
potentials [14] the energy difference of 2 N — (0~ -+ O+) is
WP (00) — Wy (00) = {(I. Ps. of OF) + (L. Ps. of C) + (E. A. of C)} — 2 (I.Ps. of N)
= {2029.66 4 1029.81 - 1.12} — 2 x 1485.65 ¢V
—89.29 eV (4.3)
=3.28{H.

This is to be compared with the value calculated by Eq. (A.6) in the Appendix
7
WO (o0) — Wy (o0) = 3 - = 3.250H (4.4)
=19

which agrees well with the empirical value [KEq. (4.3)].

The energy difference between C + O atoms and N + N atoms (ground states)
has been calculated using the 1/Z-expansion through the first-order. The result,
WP (co) — Wy (o0) ~ 2.85 H, is to be compared with the empirical value, 3.74 H,
computed using the jonjzation potential [14] of each electron of N, C and O atoms.
The poor agreement shows that higher order terms should be included in the
1)Z-expansions of the electronic energies of the atoms.

The electronic energies as functions of the internuclear separation R are
shown schematically as in Fig. 1.

2. Schwartz discriminant

The object of this section is to check the inequality Eq. (2.27b). To find
AW (Ry) = W, (Ry) — W (R,) where R, is the equilibrium internuclear distance
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of N,, we expand the molecular energy of CO, #, (R), which is the sum of the
electronic energy and the internuclear repulsion energy, about the equilibrium
internuclear distance, R,

a2 B
B, (B) = B, (R + 3 (B~ Bt (), + - (4.5)
where (d? B,/dB?), = k, is the force constant for CO. Also we note that
BY (By) = — DY + B (c0) (4.6)

El (Re) = Dl + E1 (OO)

1} 7 49
(eV)

8929

WR)

[} 7249

[ oo

Fig. 1. Schematic plot of the empirical electronic energy W(R) against the internuclear separation R for relevant
states of CO and N,

where D{¥ and D, are the dissociation energies of N, and CO. Using Egs. (4.5) and
(4.6), we obtain

— AW (Ry) ~ (D; — D) + {E" (c0) — Ey (o)} +

+ (Zc Zo - Z?V)/RO - (Ro - Re)z ke/2 (4-7)
where Zy, Z¢ and Zg are the nuclear charges of N, C and O. By making use of the
necessary molecular constants given in Tab. 1, we obtain

AW (R)) ~ —33H. (4.8)
Since {u) = — 0.15 Debye [9] and x = 23.8 x 1072% cm?® [13], we get
(AZx By — ()2 x) ~ 013 H.. (4.9)

The inequality (2.27b) becomes 3.3 = 0.13, and is thus easily satisfied for the case
of N, and CO. The use of the leading terms in the perturbation expansions is
therefore not in conflict with the Schwartz inequality.

3. Correlation of the electronic states and degeneracy
The proposed perturbation treatment in Section II expands the wavefunction
¥, and energy W, (R) for the lowest state of CO about those for the lowest state
of N,, namely P and W (R), in powers of A= (Z4— Z35)/(Z4 + Zp). The
expansions are given in Egs. (2.5) and (2.6). However, the treatment in Section II
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overlooks the following difficulty: the electronic states of CO and N, which are
related by the perturbation theory must be “‘adiabatically correlated” in the sense
that if A were reduced from % to 0 the states must become identical.

‘When the atoms are separated at R = co we know that in fact the state C + O
is correlated with N+ 4 N—, and the state N + N is correlated with C- + O+,

That is: lim lim ¥, = P© (4.10)
7—0 R—00
although lim ¥, = PO . (4.11)
(nggo)

When R = 0 at the united atom (Si) the energies are independent of A since the
nuclei are united, and only the total charge Z (= 14) matters. The correlations of
the states are shown schematically in Fig. 2.

NN
N+N N; (%/0))
No (%)
W W
C+0*
C+0
C0(%)
0 Y7 0 4
A 2
a b

Fig. 2. Correlation of the electronic states. a) R = o0, b) R~ R,

To check the applicability of the proposed perturbation theory, we consider
the crossing point of the two states. At the limit as E— oo, the separated ions
N+ and N~ are in different ground 3P states and there exist four degenerate 1 >+
states [7] which are coupled by the perturbation V. Hence degenerate perturbation
theory must be applied. Suppose that the four *>+ states of N+ + N~ can be
described by the orthonormal wave functions ¢, (2, b), @, (b, @), @, (2, b) and
@y (b, @) where ¢, (b, a) and @, (b, ) are obtained from ¢, (@, b) and ¢, (a, b) by
interchanging nitrogen nuclei 4 and B. From these four wave functions, we can
construct two symmetric wave functions and two antisymmetric wave functions;

Yig = ‘1/1’-2 {g1 (0, 8) + @y (b, @)}

Yau = —V%—{% (@, b) — @y (b, a)} (4.12)

yu =75 {72 (0, 0) — 0, (6, ).
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Since the perturbation ¥ has u-symmetry the secular equation is given by

—wa 0 Vi Vi
0 —-Wo Vs Vs
Vs Vi —Wwo 0 =9 (4.13)
Vi o Vs 0 —-wa

where Vi = {y;, V>, By solving Eq. (4.13) we can obtain the lowest first-order
energy WiV

On the other hand, the separated atoms N -+ N are in the same 48 state at the
limit as B — oo, and can be treated as a non-degenerate case since only one 1>+
state exists. Hence in general we shall have

W, (c0) = W (c0) + A2 W (c0) 4 - -, (4.14a)
Wy (c0) = WS (c0) + A W (c0) + -+ - . (4.14b)
Therefore the approximate crossing point at B = oo is
AW®O (oo
Ao (R = 00) = ‘_WQ(E.T)) (4.15)

Since the denominator in Eq. (4.15) is the first order energy coefficient, A, (R = o)
may be smaller than %, (see Fig. 3a).

[
I
|
|
|
|
l
|

—

A

Fig. 3. Schematic plot of the electronic energy W against the perturbation parameter A. 177/"1 and WZ are given by
Eqs. (4.18a) and (4.18b). a) R =c0,b) R~ R,

When R is near the equilibrium internuclear separation of N,, E,, we approxi-
mate the two states of CO as follows:

P, = PO 4 PP
P, = PO+ )PP (4.16)
where ¥ and P are the solutions of the first-order perturbation equations
(Hg— WOYPD L VPO =0, i=1,2. (4.17)
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Then since W = WP =0 and WP = W = 0 due to u-symmetry of V, we

have -~ © Ay WD
Wy= W + RS, (4.18a)
~ RWe
_ e A
W= W0+ s (4.18b)

where §; = (P0, POS and 8, = (PP, PP, I we put W, = W, and neglect 12
terms in denominators, we obtain the approximate crossing point
AW
e = ]/ ~ AT (4.19)

where AW©® = WP — WP and AW® = WP — WP. Note that A, is real only if
AW® AW® < 0, which is in fact the case. Since it appears that | AW© | > JAW®)]
(see Fig. 3b), we assume that 1, > +.

Hence we conclude that the proposed perturbation theory may be applied when
R is not too large.

4. Calculation of second-order energy and dipole moment
Variational solutions of the first-order Eq. (3.6) have been obtained by means
of Eq. (3.9), and used to calculate the second-order energy and dipole moment.
Two sets of approximate Hartree-Fock molecular orbitals for N, were employed:
1. NEsBET’s molecular wavefunctions [15] and 2. Ransit’s best limited LCAO-MO
[Z7]. For the functions f;, four- and seven-term polynomials were employed:
~ 47
fia = — ~Rg (@i + @i &y + a3 E2 1 + au n®) (4.20a)
and
~ o~ 47,
fig = fia — 5~ (@5 &n® + ais 2 0° + ai ) (4.20b)
where £ and 7 are prolate spheroidal coordinates defined by
E_TA+7'B_ _Ta—178
~r *"TTR
The variational coefficients a;;, in Eqs. (4.20a) and (4.20b) were determined by
minimizing the functional (3.9).
It should be noticed that the operators v and p have u-symmetry, and therefore

(4.21)

the functions ﬁ should also have u-symmetry. Hence the integrals (y;, v ;> and
{yi, gy vanish unless the spatial functions y; and y; have different inversion
symmetry. Furthermore, the required molecular integrals

fmmr
v m?ﬂ
s &M x>

where y and y' are Slater-type AO’s centered at atom 4 or B, are easily expressed
in terms of the auxiliary functions

and

Am(t) = | et gm de

Bu(t) =)\ eyt dy. (4.22)

g

1
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Table 2. Colculated energy (Hartrees) and dipole moment (a. u.) of CO

R (B) 1.868¢ 2.068¢ 2.268¢ 2.068¢
Eo —108.94320 —108.97143 —108.92938  —108.63359
A2 We » — 5.833 — 6.727 — 17.889 — 6.724
b — 5877 — 6.776 — 7.952 — 6.789
—1/R — 0.535 — 0484 — 0441 — 0484
E a ~115.311 —116.182 —117.259 —115.842
b —115.355 ~116.231 —117.322 —115.907
(e a —  5.966 — 9436 — 14.363 — 12.607
b —  6.064 —  9.562 — 14.554 — 12.767

» Four-term perturbation polynomial was used [Eq. (4.20a)].

b Seven-term perturbation polynomial was used [Eq. (4.20b)].

¢ NESBET’s [15] molecular wavefunction for N, was used.

4 RanSTL’s best limited LCAO-MO [17] was used.

e Dipole moment was defined as negative for C+ O~ (See Section II.4).

Table 3. Energy (Hartrees) and dipole moment (a.u.) of NESBET's [15] molecular wavefunction

for CO
R (B) 1.808393 1.932 2.132 2.323 2.455607
E —112.66220 —112.72952 —112.75878 —112.73211 —112.70106
(u) 0.0830 — 0.0032 — 0.1562 — 0.3246 — 0.4342

Table 4. Expansion coefficients in the perturbation polynomial and orbital contributions to the
second-order energy and dipole moment for B = 2.068. Zeroth-order wavefunction ¢s NESBET’s [15]
molecular wavefunction for N,

Coefficients in ?;;a [four-term perturbation polynomial, Eq. (4.20a)]

Orbital aa @iz @3 @i w;i® (H) A2 (HY  Aue® (a.u.)
104 —1.2346  0.5160 0.0296  0.0367 —15.69623 —0.4875 —0.0020
2ay —0.8774 01152 0.0406 01250 — 1.48569 —0.3250 -—0.1279
30y —1.0078  0.3561 —0.0131 —0.0291 — 0.64278 —0.2378 —0.0511
1o0. —1.1463  0.5007 0.0369  0.0043 —15.69262 —0.4721 +0.0008
2 oy —1.0249 0.3575 —0.0042 —0.0445 — 0.78581 —0.2257 +0.0771
1 7w —1.7743  0.1897 —0.0250 0.4672 — 0.62261 —0.8078 —1.3864

The calculated results of the second-order energy, molecular energy and dipole
moment are given in Tab. 2. To compare the present results with those of a direct
Hartree-Fock calculation, the molecular energy and dipole moment of NESBET’s
[15] molecular wavefunction for CO are shown in Tab. 3. To further show the
dependence of the second-order energy and dipole moment on the choice of trial

functions ]71-, the coefficients in the four-term perturbation polynomials [Eq. (4¢.20a)],
and also the orbital contributions to the second-order energy and dipole moment,
are given in Tab. 4.

The results for B = 2.068 B using RaxsivL’s [17] and NEsBET’s [15] molecular
wavefunctions for N, as zeroth-order wavefunction show that the molecular
properties in this calculation are not very sensitive to the choice of zeroth-order
wavefunction (see Tab. 2).
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The calculated molecular energy of CO is too low by 2.0~ 6.0 H in the given
range of R and decreases too fast as R becomes larger. (See Tab. 2 and 3). Hence
the calculated molecular energy does not give a minimum in the range of R
investigated as implied by Eq. (2.12).

The calculated dipole moment of CO is ridiculously large in magnitude com-
pared with the results of Hartree-Fock calculations [15, 9] and the experimental
value [1]. The large magnitude of the dipole moment is mainly due to the abnor-
mally large contribution from the 1 5, orbital.

V. Discussion

The present quantitative results of this theory for the isoelectronic molecules
N, and CO are disappointing. The calculated molecular energy of CO is too low and
does not give a minimum in the given range of internuclear separation R. It is
shown, however, that the polarity of the electric dipole moment of CO agrees with
the results of recent Hartree-Fock calculations [715, 9] at the equilibrium separa-
tion, although the magnitude is too large. It should be noticed that the SCF-
LCAO-MO approximation to the Hartree-Fock solution of N, was employed for
zeroth-order wavefunction, and the uncoupled Hartree-Fock approximation was
used to determine the second-order energy and the first-order wavefunction. The
use of the coupled Hartree-Fock approximation might improve the result.

It is interesting to note that the molecular energy difference AE = E¢o — By,
may be obtained directly by means of the integral Hellmann-Feynman theorem
formulated by K and Parr [12]. In this case the theorem takes the form
(oo, AV Phy)

{(¥eo, Py,
where the first term is the nuclear-nuclear repulsion energy difference and ¥go
and ¥y, may be approximated by Hartree-Fock wavefunctions for CO and N,,.
The advantage of Eq. (5.1) is that it is valid whether or not AV is small. If the
right hand side of Eq. (5.1) is expanded in powers of 4, it reduces to the perturba.-
tion series, Eq. (2.9).

A related perturbation treatment for acetylene based on the isoelectronic
molecule N, has been performed by GiLsox and ArexTs [6]. However, in this case
the first-order energy does not vanish, and it alone was calculated. The error
involved was about twice that in the present paper, but in the opposite direction.

The significance of the present theory is that it provides a method of comparing
the properties of iso-electronic molecules by a perturbation procedure. The
perturbation operator [see Eq. (2.4)] has u-symmetry and is a sum of one-electron
operators. The symmetry feature of the perturbation operator simplifies the actual
calculation of the energy and other molecular properties for diatomic molecules, as
shown in Section IV, 4. The one-electron character of this operator allows the use of
the well-developed theory of the one-electron perturbation effect. (Cf. Section I11.)

The theory might be extended to polyatomic molecules and crystals. For
example, borazine, B;N;H, might be treated with benzene, C;H,, as the unper-
turbed system, and borazon, (BN)_, with diamond as the unperturbed system.
For these cases, A = (Zy — Zg)/(Zy + Zg) = i, On the other hand, the diatomic
molecule BF, with N, as the unperturbed system, would have A — & which is
probably too large for the theory to work.

AE = — 2 ZYR + (5.1)



406 Ta1 Yue Caanag and W. Byers BRowN:

Acknowledgements. The authors would like to thank Dr. T. H. WaLNuUT for correcting an
elementary but vital error in the original treatment. We are also very grateful to Dr. S. T.
EpsTEIN for numerous invaluable discussions about the Hartree-Fock approximations, and to
Dr. J. O. HirsorFELDER for helping to clarify the behavior of the energy curves in the presence
of degeneracy. Thanks are also due to Mr. H. v. HirscERAUSEN for a critical reading of the
manuscript, which has led to many improvements in presentation.

Appendix
Energy difference for separated atoms
The electronic energy difference at the infinite internuclear separation,
[W (c0) — WO (o0)], can be easily computed using the 1/Z-expansion for the
atomic energies. For an atom with nuclear charge Z, and N electrons, the elec-
tronic energy can be expanded as follows
& (Zy, N) = Z3 sO(N) + Z, eO(N) + s®(N) + sO(N)/Zy + O (YZ3) . (AL)
For the perturbed condition, that is, an atom with nuclear charge Z, (1 + A) and
an atom with nuclear charge Z, (1 — 1), the total energy is
W (c0) =& [Zy (14 2), N1+ E[Zy (1 — 1), N]
= 2{Z3 6O(N) + Zy eO(N) + sO(N) -+ sO(N)Zy + - -} + (A.2)
+ 222 {ZF cON) + e®(N)/Zy+ -} + 224 {e®(N)/Zy+ -} .
Since WO (o0) = 2 & (Z,, V), the energy difference is given by
W (c0) — WO (c0) = 2 2 {Z2 eO(N) + e®(N)/Zy+ -} + O (2%) . (A.3)
Hence we obtain
W@ (c0) = 2 {Z5 eO(N) + e®(N)/Zy + O (1))} . (A.4)
The interesting feature is that W® (co) contains neither the average repulsion
term £O(N) nor the second order term ¢@(N). The third order term &®)(N) is

expected to be very much smaller than £ (%). If the sth electron in a hydrogenic
orbital has principal quantum number #;, then

¥1

eON) = — 1 > 5. (A.5)
=1
Note that if Z4 = Z, + 1 and Zg = Z, — 1, so that A Z, = 1, then
L |
EZa M)+ & (Ep N) =28 Zy M) = = 3 . (A.6)

i=1
This corresponds to the energy difference between the ion pair 4+ + B~ and two
neutral atoms, €, each having N electrons.
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